我国包虫病报告病例数自回归移动平均模型预测研究
Study on the ARIMA model application to predict echinococcosis cases in China
摘要目的 采用自回归移动平均模型(Autoregressive integrated moving average,ARIMA)对全国(不含港、澳、台地区)包虫病月报告病例数进行预测,为包虫病的防控提供科学参考.方法 通过SPSS 24.0软件,分别以2007-2015年和2007-2014年全国包虫病月报告病例数,分别建立最优的ARIMA模型,并进行模型比较.结果2007-2015年全国包虫病月报告病例数的最优模型为ARIMA(1,0,0)(1,1,0)12,预测相对误差为-13.97%,AR(1)=0.367(t=3.816,P<0.001)、SAR(1)=-0.328(t=-3.361,P=0.001),Ljung-Box Q=14.119(df=16,P=0.590).2007-2014年全国包虫病月报告病例数的最优模型为ARIMA(1,0,0)(1,0,1)12,预测相对误差为0.56%,AR(1)=0.413(t=4.244,P<0.001),SAR(1)=0.809 (t=9.584,P<0.001),SMA(1)=0.356(t=2.278,P=0.025),Ljung-Box Q=18.924(df=15,P=0.217).结论 时间序列不同,所建立的预测模型可能不同.数据积累越多、预测时间越短、预测误差越小的情况还需得到进一步验证.模型的建立和预测应用是动态过程,需要不断根据积累的数据进行调整,但同时要充分考虑影响传染病报告病例数相关工作(普查和专项调查等)的影响.
更多相关知识
- 浏览227
- 被引7
- 下载27

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文