医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

改进的K-均值聚类算法及其在脑组织分割中的应用

An Improved K-means Algorithm For Brain Tissue Segmentation

摘要目的:鉴于K-均值聚类算法易受初始聚类中心的影响,初始聚类中心不仅影响聚类速度,还可能使算法陷入局部极小值,得到错误的聚类结果,基于SOM神经网络,提出了一种改进的K-均值聚类算法并将其应用于脑实质分割.方法:首先,由SOM神经网络对图像进行初始聚类,得到k个聚类中心值;然后,以SOM神经网络获得的k个聚类中心值作为K-均值聚类算法的初始聚类中心对图像进行k-均值聚类,最终获得图像的聚类分割结果.结果:基于SOM神经网络的K-means聚类算法的分割精度为0.9274,K-means聚类算法的分割精度为0.8649.结论:利用改进的K-均值聚类算法对磁共振脑部图像进行了分割实验,结果表明该算法有效改善了K-means聚类算法初始聚类中心选取的盲目性,使聚类结果更为准确、稳定,取得了比单一方法更好的分割结果.

更多
广告
  • 浏览85
  • 下载0
中国医学物理学杂志

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷