摘要全面考虑脑胶质瘤分割图像的边界信息和区域信息,在水平集的基础上,将基于边缘检测的活动轮廓模型(GAC模型)和局部图像拟合模型(LIF模型)相结合,提出一种混合水平集的分割方法.首先,对脑胶质瘤MR图像进行预处理,采用C-V模型提取脑组织;然后,创建混合水平集模型,对脑组织图像中的脑胶质瘤进行分割.实验证明,本研究的分割方法可以简化水平集符号距离函数的正则化过程,并且可有效克服GAC模型在弱边缘或离散边缘处产生的边界泄漏的问题,从而取得较好的分割结果.
更多相关知识
- 浏览51
- 被引4
- 下载12

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文