融合改进Transformer和卷积通道注意力模块的U-Net用于双心室分割
Biventricular segmentation using U-Net incorporating improved Transformer and convolutional channel attention module
摘要设计一种融合改进Transformer和卷积通道注意力模块的U-Net用于MRI图像双心室分割.通过在U-Net的高层卷积部分基础融合改进Transformer,有效增强全局特征信息的提取能力以应对右心室复杂的形态变化造成低分割性能的难题.改进的Transformer在自注意力模块部分中加入固定窗口注意力进行位置定位,随后对其输出特征图进行聚合以缩小特征图尺寸;同时通过改进多层感知器来加深网络深度以提高网络学习能力.为解决组织边缘模糊造成的分割性能不理想问题,引入特征聚合模块进行多层次底层特征的融合,利用卷积通道注意力模块对底层特征进行重标定,实现自适应地学习特征权重.此外,针对编解码结构中通道衰减造成特征丢失导致的低分割性能,网络集成一个即插即用的特征增强模块,保证空间信息同时增加有用通道信息的比重.在ACDC数据集对本文算法进行测试,结果表明本文方法对左右心室的分割精度均优于近年其他算法,尤其是右心室分割结果,相比于其他方法,DSC系数提高至少2.83%,证明本文方法对双心室分割的有效性.
更多相关知识
- 浏览9
- 被引0
- 下载4

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文