医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于RBF神经网络的双臂手术机器人自适应导纳控制

Adaptive admittance control for dual-arm surgical robot using radial basis function neural network

摘要针对双臂机器人在辅助头颈部手术拉开软组织过程中环境刚度变化而导致的力跟踪误差较大问题,提出一种基于径向基函数(RBF)神经网络的自适应导纳控制策略,减小力跟踪误差,提升系统的响应速度.通过在手术过程中利用RBF神经网络在线调整导纳参数,提高机械臂对不同接触条件和操作要求的适应性,实现快速精确的力跟踪.仿真实验将基于RBF神经网络的自适应导纳控制策略引入双臂力同步导纳控制系统并与传统定参数导纳控制对比,证明其在接触环境参数变化情况下的接触力控制效果.结果表明,基于RBF神经网络的自适应导纳控制策略可以有效提升双臂手术机器人力跟踪精度、响应速度以及抗干扰能力.

更多
广告
分类号 R318TP242
栏目名称
DOI 10.3969/j.issn.1005-202X.2024.02.012
发布时间 2024-03-13(万方平台首次上网日期,不代表论文的发表时间)
基金项目
国家自然科学基金(62003207); 国家重点研发计划(2019YFC0119303); 中国博士后基金面上资助项目(2021M690629)
  • 浏览23
  • 下载3
中国医学物理学杂志

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷