医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于卷积神经网络检测肺结节

Detection of pulmonary nodules based on conventional neural networks

摘要目的 针对目前基于胸部CT图像的肺结节自动检测方法的检出率较低且存在大量假阳性的问题,提出一种基于卷积神经网络的肺结节检测方法.方法 采用基于模糊建模思想和迭代相对模糊连接度(IRFC)算法的自动解剖识别(AAR)方法分割肺部CT图像,提取肺部实体部分;将分割后的图像输入卷积神经网络,提取肺结节特征;采用位置敏感特征图表达结节的位置信息.结果 使用天池医疗AI大赛数据集,精准分割肺部CT图像,检测肺结节的准确率、敏感度、特异度和假阳性率分别为95.60%、95.24%、95.97%和4.03%.结论 基于卷积神经网络检测肺结节有较高的精度和效率,且鲁棒性好.

更多
广告
  • 浏览344
  • 下载201
中国医学影像技术

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷