• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于块稀疏贝叶斯学习算法的心电数据重构

Electrocardiograph Reconstruction Based on Block Sparse Bayesian Learning Algorithm

摘要压缩感知(CS)技术在心电信号上的应用具有低成本、低功耗等优势,但传统的CS算法重构心电信号质量并不理想.本文介绍了一种基于信号块结构内相关性的块稀疏贝叶斯学习(BSBL)CS算法;并对MIT-BIH数据库中心电数据进行实验,结果显示其均方根误差远低于传统CS算法,表明该算法能够高质量重构心电信号.BSBL算法在心电数据上的应用有效降低了对数据的采样频率,从而缓解存储压力并降低功耗.

更多
广告
  • 浏览149
  • 下载13
中国医学影像学杂志

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷