• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Machine-learning-based models assist the prediction of pulmonary embolism in autoimmune diseases: A retrospective, multicenter study

Machine-learning-based models assist the prediction of pulmonary embolism in autoimmune diseases: A retrospective, multicenter study

摘要Background::Pulmonary embolism (PE) is a severe and acute cardiovascular syndrome with high mortality among patients with autoimmune inflammatory rheumatic diseases (AIIRDs). Accurate prediction and timely intervention play a pivotal role in enhancing survival rates. However, there is a notable scarcity of practical early prediction and risk assessment systems of PE in patients with AIIRD.Methods::In the training cohort, 60 AIIRD with PE cases and 180 age-, gender-, and disease-matched AIIRD non-PE cases were identified from 7254 AIIRD cases in Tongji Hospital from 2014 to 2022. Univariable logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) were used to select the clinical features for further training with machine learning (ML) methods, including random forest (RF), support vector machines (SVM), neural network (NN), logistic regression (LR), gradient boosted decision tree (GBDT), classification and regression trees (CART), and C5.0 models. The performances of these models were subsequently validated using a multicenter validation cohort.Results::In the training cohort, 24 and 13 clinical features were selected by univariable LR and LASSO strategies, respectively. The five ML models (RF, SVM, NN, LR, and GBDT) showed promising performances, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.962-1.000 in the training cohort and 0.969-0.999 in the validation cohort. CART and C5.0 models achieved AUCs of 0.850 and 0.932, respectively, in the training cohort. Using D-dimer as a pre-screening index, the refined C5.0 model achieved an AUC exceeding 0.948 in the training cohort and an AUC above 0.925 in the validation cohort. These results markedly outperformed the use of D-dimer levels alone.Conclusion::ML-based models are proven to be precise for predicting the onset of PE in patients with AIIRD exhibiting clinical suspicion of PE.Trial Registration::Chictr.org.cn: ChiCTR2200059599.

更多

abstractsBackground::Pulmonary embolism (PE) is a severe and acute cardiovascular syndrome with high mortality among patients with autoimmune inflammatory rheumatic diseases (AIIRDs). Accurate prediction and timely intervention play a pivotal role in enhancing survival rates. However, there is a notable scarcity of practical early prediction and risk assessment systems of PE in patients with AIIRD.Methods::In the training cohort, 60 AIIRD with PE cases and 180 age-, gender-, and disease-matched AIIRD non-PE cases were identified from 7254 AIIRD cases in Tongji Hospital from 2014 to 2022. Univariable logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) were used to select the clinical features for further training with machine learning (ML) methods, including random forest (RF), support vector machines (SVM), neural network (NN), logistic regression (LR), gradient boosted decision tree (GBDT), classification and regression trees (CART), and C5.0 models. The performances of these models were subsequently validated using a multicenter validation cohort.Results::In the training cohort, 24 and 13 clinical features were selected by univariable LR and LASSO strategies, respectively. The five ML models (RF, SVM, NN, LR, and GBDT) showed promising performances, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.962-1.000 in the training cohort and 0.969-0.999 in the validation cohort. CART and C5.0 models achieved AUCs of 0.850 and 0.932, respectively, in the training cohort. Using D-dimer as a pre-screening index, the refined C5.0 model achieved an AUC exceeding 0.948 in the training cohort and an AUC above 0.925 in the validation cohort. These results markedly outperformed the use of D-dimer levels alone.Conclusion::ML-based models are proven to be precise for predicting the onset of PE in patients with AIIRD exhibiting clinical suspicion of PE.Trial Registration::Chictr.org.cn: ChiCTR2200059599.

More
广告
作者 Hu Ziwei [1] Hu Yangyang [1] Zhang Shuoqi [2] Dong Li [3] Chen Xiaoqi [4] Yang Huiqin [5] Su Linchong [6] Hou Xiaoqiang [7] Huang Xia [6] Shen Xiaolan [7] Ye Cong [1] Tu Wei [1] Chen Yu [1] Chen Yuxue [1] Cai Shaozhe [1] Zhong Jixin [1] Dong Lingli [1] 学术成果认领
作者单位 Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China [1] Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China [2] Department of Rheumatology and Immunology, Jingzhou Central Hospital, Yangtze University, Jinzhou, Hubei 434020, China [3] Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China [4] Department of Rheumatology, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China [5] Department of Rheumatology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, China [6] Department of Rheumatology and Immunology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443003, China [7]
栏目名称 Original Article
DOI 10.1097/CM9.0000000000003025
发布时间 2025-03-04
基金项目
National Natural Science Foundation of China Tongji Hospital Clinical Research Flagship Program
  • 浏览12
  • 下载0
中华医学杂志英文版

中华医学杂志英文版

2024年137卷15期

1811-1822页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

扩展文献

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷