• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于深度学习的乳腺超声应变弹性图像生成模型的应用研究

Application value of a deep learning-based model for generating strain elastography images using breast grayscale ultrasound images

摘要目的:探讨基于深度学习模型生成乳腺超声应变弹性图像的应用价值。方法:回顾性收集2019年5月至2022年6月在西京医院行乳腺超声检查的患者的超声图像共1336组,在神经网络中生成对抗网络(GAN)的基础上构建深度学习生成模型,使用训练集882组和验证集354组图像进行模型的训练和调整,另外100组测试集图像使用模型生成弹性图像,比较真实弹性图像和生成弹性图像的相似度。选取4位不同年资医师(高低年资医师各2名)比较两种弹性图像的差异。应用归一化互相关(NCC)值评价两种弹性图像的相似程度,并进行阅片医师真实性评分;基于Tsukuba 5分弹性评分标准,应用Kappa检验比较4位医师弹性评分的一致性,绘制ROC曲线评估不同医师分别结合两种弹性图像应用BI-RADS分类诊断乳腺病灶良恶性的效能。结果:测试集中两种弹性图像相似度的NCC平均值为0.70±0.08,中位数0.70,范围0.50~0.86。真实性评价所有医师得分为0.49,低年资医师得分0.45,高年资医师得分0.53,均接近0.50。比较4位医师弹性评分的一致性Kappa值,生成图像高于真实图像(Kappa值:0.61 vs 0.57)。每位医师分别结合两种弹性图像应用BI-RADS分类的ROC曲线下面积差异无统计学意义(P>0.05),除1名高年资医师的特异度(P=0.0196)和阳性预测值(P=0.021)外,所有医师的敏感度、特异度、阳性预测值、阴性预测值结果差异均无统计学意义(P均>0.05)。结论:基于深度学习构建的乳腺超声应变弹性图像生成模型,能够生成与真实弹性图像相似的弹性图像,并且生成图像在辅助诊断方面达到了与真实图像相近的临床价值。

更多
广告
作者 李洋 [1] 蔡金玉 [2] 党晓智 [1] 常婉英 [1] 巨艳 [1] 高毅 [2] 宋宏萍 [1] 学术成果认领
作者单位 710032 西安,空军军医大学第一附属医院(西京医院)超声医学科 [1] 518073 深圳大学医学部生物医学工程学院 [2]
DOI 10.3877/cma.j.issn.1672-6448.2024.06.003
发布时间 2024-08-20
  • 浏览25
  • 下载0
中华医学超声杂志(电子版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷