医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于均矢量相似性的机器学习样本集划分

Partitioning machine learning sample set using similarity to mean vector

摘要提出一种基于均矢量相似性的机器学习样本集分割方法(MSSS),根据样本集中每个样本矢量与均矢量之间的余弦相似性,将样本划分成训练集和测试集.为评价MSSS方法性能,分别用随机分割法(RSS)和MSSS方法,按不同比例划分来自UCI的4个数据集,对产生的训练集一测试集进行Hotelling T~2检验;另外,采用得到的训练集对分类BP神经网络进行训练,以相应的测试集测试神经网络.研究结果表明:对用RSS划分4个数据集产生的训练集一测试集进行Hotelling T~2检验,发现均存在F值超出界值的现象,而MSSS均未出现;使用MSSS训练的神经网络所产生的训练-测试误差差异、准确率差异均比使用RSS训练的神经网络所产生的小,说明用MSSS划分产生的训练集与测试集的一致性比用RSS划分产生的好.

更多
广告
  • 浏览2
  • 下载0
中南大学学报(自然科学版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷