• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

The Gray Mold Spore Detection of Cucumber Based on Microscopic Image and Deep Learning

摘要Rapid and accurate detection of pathogen spores is an important step to achieve early diagnosis of diseases in precision agriculture.Traditional detection methods are time-consuming,laborious,and subjective,and image processing methods mainly rely on manually designed features that are difficult to cope with pathogen spore detection in complex scenes.Therefore,an MG-YOLO detection algorithm(Multi-head self-attention and Ghost-optimized YOLO)is proposed to detect gray mold spores rapidly.Firstly,Multi-head self-attention is introduced in the backbone to capture the global information of the pathogen spores.Secondly,we combine weighted Bidirectional Feature Pyramid Network(BiFPN)to fuse multiscale features of different layers.Then,a lightweight network is used to construct GhostCSP to optimize the neck part.Cucumber gray mold spores are used as the study object.The experimental results show that the improved MG-YOLO model achieves an accuracy of 0.983 for detecting gray mold spores and takes 0.009 s per image,which is significantly better than the state-of-the-art model.The visualization of the detection results shows that MG-YOLO effectively solves the detection of spores in blurred,small targets,multimorphology,and high-density scenes.Meanwhile,compared with the YOLOv5 model,the detection accuracy of the improved model is improved by 6.8%.It can meet the demand for high-precision detection of spores and provides a novel method to enhance the objectivity of pathogen spore detection.

更多
广告
作者 Kaiyu Li [1] Xinyi Zhu [1] Chen Qiao [1] Lingxian Zhang [2] Wei Gao [3] Yong Wang [3] 学术成果认领
作者单位 China Agricultural University,Beijing,100083,China [1] China Agricultural University,Beijing,100083,China;Key Laboratory of Agricultural Informationization Standardization,Ministry of Agriculture and Rural Affairs,Beijing,100083,China [2] Tianjin Academy of Agricultural Sciences,Institute of Plant Protection,Tianjin,300384,China [3]
栏目名称 Research Articles
DOI 10.34133/plantphenomics.0011
发布时间 2024-03-26
  • 浏览1
  • 下载0
植物表型组学(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷