医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

High-Throughput Spike Detection in Greenhouse Cultivated Grain Crops with Attention Mechanisms-Based Deep Learning Models

摘要Detection of spikes is the first important step toward image-based quantitative assessment of crop yield.However,spikes of grain plants occupy only a tiny fraction of the image area and often emerge in the middle of the mass of plant leaves that exhibit similar colors to spike regions.Consequently,accurate detection of grain spikes renders,in general,a non-trivial task even for advanced,state-of-the-art deep neural networks(DNNs).To improve pattern detection in spikes,we propose architectural changes to Faster-RCNN(FRCNN)by reducing feature extraction layers and introducing a global attention module.The performance of our extended FRCNN-A vs.conventional FRCNN was compared on images of different European wheat cultivars,including"difficult"bushy phenotypes from 2 different phenotyping facilities and optical setups.Our experimental results show that introduced architectural adaptations in FRCNN-A helped to improve spike detection accuracy in inner regions.The mean average precision(mAP)of FRCNN and FRCNN-A on inner spikes is 76.0%and 81.0%,respectively,while on the state-of-the-art detection DNNs,Swin Transformer mAP is 83.0%.As a lightweight network,FRCNN-A is faster than FRCNN and Swin Transformer on both baseline and augmented training datasets.On the FastGAN augmented dataset,FRCNN achieved a mAP of 84.24%,FRCNN-Aattained a mAP of 85.0%,and the Swin Transformer achieved a mAP of 89.45%.The increase in mAP of DNNs on the augmented datasets is proportional to the amount of the IPK original and augmented images.Overall,this study indicates a superior performance of attention mechanisms-based deep learning models in detecting small and subtle features of grain spikes.

更多
广告
作者 Sajid Ullah [1] Klára Panzarová [2] Martin Trtílek [2] Matej Lexa [3] Vojtěch Má?ala [3] Kerstin Neumann [4] Thomas Altmann [4] Jan Hejátko [5] Markéta Pernisová [5] Evgeny Gladilin [4] 学术成果认领
作者单位 Mendel Centre for Plant Genomics and Proteomics,Central European Institute of Technology(CEITEC),Masaryk University,Brno,Czech Republic;National Centre for Biomolecular Research,Faculty of Science,Masaryk University,Brno,Czech Republic;Photon Systems Instruments,spol.s r.o.,Drasov,Czech Republic [1] Photon Systems Instruments,spol.s r.o.,Drasov,Czech Republic [2] Faculty of Informatics,Masaryk University,Botanicka 68a,Brno,Czech Republic [3] Leibniz Institute of Plant Genetics and Crop Plant Research,Seeland OT Gatersleben,Germany [4] Mendel Centre for Plant Genomics and Proteomics,Central European Institute of Technology(CEITEC),Masaryk University,Brno,Czech Republic;National Centre for Biomolecular Research,Faculty of Science,Masaryk University,Brno,Czech Republic [5]
栏目名称
DOI 10.34133/plantphenomics.0155
发布时间 2024-10-11(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览2
  • 下载0
植物表型组学(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷