摘要Asian soybean rust (ASR) is one of the major diseases that causes serious yield loss worldwide,even up to 80%.Early and accurate detection of ASR is critical to reduce economic losses.Hyperspectral imaging,combined with deep learning,has already been proved as a powerful tool to detect crop diseases.However,current deep learning models are limited to extract both spatial and spectral features in hyperspectral images due to the use of fixed geometric structure of the convolutional kernels,leading to the fact that the detection accuracy of current models remains further improvement.
更多相关知识
- 浏览2
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文