医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Performance of stacking machine learning and volume model for improving corn above ground biomass prediction

摘要The aboveground biomass(AGB)of crops is an essential metric for monitoring crop growth,making timely and accurate AGB forecasting critical for effective agricultural management.The introduction of Unmanned Aerial Vehicles(UAVs)and advanced sensor technologies has revolutionized traditional AGB prediction techniques.Currently,machine learning(ML)combined with UAV data are commonly utilized,along with the Vegetation Index Weighted Canopy Volume Model(CVMVI)for AGB prediction.Nevertheless,there is limited investigation into how these methods perform across different agricultural conditions.This study aims to fill this gap by creating specific methodologies for estimating corn AGB under diverse fertilization and irrigation treatments.We utilized LiDAR,multispectral(MS),thermal infrared(TIR),along with measured AGB and Leaf Area Index(LAI)data from various growth stages to develop a stacking ensemble learning model.This model effectively integrates data from multiple sources,resulting in a strong prediction performance with R2 of 0.86,Mean Absolute Error(MAE)of 1.54 t/ha,and Root Mean Square Error(RMSE)of 2.06 t/ha.Meanwhile,the analysis of the accuracy of CVMvi revealed its efficacy during the early-stage when corn is short,with its predictive capability diminishing as AGB increases.Consequently,we recommend the CVMVI for early-stage AGB prediction,which can streamline data collection and computational efforts.In contrast,the ML approach,which benefits from data fusion,is more appropriate for predicting AGB during the mid to late growth stages.This study enhances AGB prediction ac-curacy and speed,providing critical understanding of regional AGB dynamics and supporting better agricultural decision-making.

更多
广告
作者 Fu Xuan [1] Wei Su [1] Zhen Chen [2] Xianda Huang [1] Weiguang Zhai [2] Xuecao Li [1] Yelu Zeng [1] Zhi Li [3] Jingsuo Li [4] Jianxi Huang [5] 学术成果认领
作者单位 College of Land Science and Technology,China Agricultural University,Beijing,100083,China [1] Institute of Farmland Irrigation,Chinese Academy of Agricultural Sciences,Xinxiang,453002,China [2] State Key Laboratory of Crop Stress Adaptation and Improvement,School of Life Sciences,Henan University,Kaifeng,475004,China [3] College of Economics and Management,Qingdao Agricultural University,Qingdao,Shandong,266109,China [4] College of Land Science and Technology,China Agricultural University,Beijing,100083,China;Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Sichuan,China [5]
栏目名称
DOI 10.1016/j.plaphe.2025.100068
发布时间 2025-11-18(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
植物表型组学(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷