医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Seeing the unseen:A novel approach to extract latent plant root traits from digital images

摘要A novel approach,the Algorithmic Root Trait(ART)extraction method,identifies and quantifies computationally-derived plant root traits,revealing latent patterns related to dense root clusters in digital im-ages.Using an ensemble of multiple unsupervised machine learning algorithms and a custom algorithm,27 ARTs were extracted reflecting dense root cluster size and spatial location.These ARTs were then used independently and in combination with Traditional Root Traits(TRTs)to classify wheat genotypes differing in drought tolerance.ART-based models outperformed TRT-only models in drought classification(e.g.,96.3%vs.85.6%accuracy).Combining ARTs and TRTs further improved accuracy to 97.4%.Notably,4 selected ARTs matched the per-formance of all 23 TRTs,offering 5.8 × higher information density(0.213 vs.0.037 accuracy/feature).This superiority reflects the ability of ARTs to capture richer,more complex architectural information,evidenced by higher internal variability(35.59±11.41 vs.28.91±14.28 for TRTs)and distinct data structures in multi-variate analyses;PERMANOVA confirmed that ARTs and TRTs provide complementary insights.Validated through experiments in controlled environments and field conditions with wheat drought-tolerant and susceptible genotypes,ART offers a scalable,customisable toolset for high-throughput phenotyping of plant roots.By bridging conventional,visually derived traits with autonomous computational analyses,this method broadens root phenotyping pipelines and underscores the value of harnessing sensor data that transcends human perception.ART thus emerges as a promising framework for revealing hidden features in plant imaging,with broader applications across plant science to deepen our understanding of crop adaptation and resilience.

更多
广告
作者 Mirza Shoaib [1] Adam M.Dimech [2] Simone J.Rochfort [3] Christopher Topp [4] Matthew J.Hayden [3] Surya Kant [5] 学术成果认领
作者单位 Agriculture Victoria,Grains Innovation Park,110 Natimuk Road,Horsham,Victoria,3400,Australia;School of Applied Systems Biology,La Trobe University,Bundoora,Victoria,3083,Australia [1] Agriculture Victoria,AgriBio,Centre for AgriBioscience,5 Ring Road,Bundoora,Victoria,3083,Australia [2] School of Applied Systems Biology,La Trobe University,Bundoora,Victoria,3083,Australia;Agriculture Victoria,AgriBio,Centre for AgriBioscience,5 Ring Road,Bundoora,Victoria,3083,Australia [3] Donald Danforth Plant Science Center,Saint Louis,Missouri,USA [4] Department of Ecological,Plant and Animal Science,School of Agriculture,Biomedicine & Environment,La Trobe University,Bundoora,Victoria,3083,Australia [5]
栏目名称
DOI 10.1016/j.plaphe.2025.100088
发布时间 2025-11-18(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览1
  • 下载0
植物表型组学(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷