医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Predictive modeling,pattern recognition,and spatiotemporal representations of plant growth in simulated and controlled environments:A comprehensive review

摘要Accurate predictions and representations of plant growth patterns in simulated and controlled environments are important for addressing various challenges in plant phenomics research.This review explores various works on state-of-the-art predictive pattern recognition techniques,focusing on the spatiotemporal modeling of plant traits and the integration of dynamic environmental interactions.We provide a comprehensive examination of deterministic,probabilistic,and generative modeling approaches,emphasizing their applications in high-throughput phenotyping and simulation-based plant growth forecasting.Key topics include regressions and neural network-based representation models for the task of forecasting,limitations of existing experiment-based deterministic approaches,and the need for dynamic frameworks that incorporate uncertainty and evolving environmental feedback.This review surveys advances in 2D and 3D structured data representations through functional-structural plant models and conditional generative models.We offer a perspective on opportunities for future works,emphasizing the integration of domain-specific knowledge to data-driven methods,improvements to available datasets,and the implementation of these techniques toward real-world applications.

更多
广告
作者 Mohamed Debbagh [1] Shangpeng Sun [1] Mark Lefsrud [1] 学术成果认领
作者单位 Department of Bioresource Engineering,McGill University,Montréal,Canada [1]
栏目名称
DOI 10.1016/j.plaphe.2025.100089
发布时间 2025-11-18(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
植物表型组学(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷