摘要Low efficiency is the main obstacle to using prime editing in maize (Zea mays). Recently, prime-editing efficiency was greatly improved in mammalian cells and rice (Oryza sativa) plants by engineering prime-editing guide RNAs (pegRNAs), optimizing the prime editor (PE) protein, and manipulating cellular determinants of prime editing. In this study, we tested PEs optimized via these three strategies in maize. We demonstrated that the ePE5max system, composed of PEmax, epegRNAs (pegRNA-evopreQ. 1), nicking single guide RNAs (sgRNAs), and MLH1dn, efficiently generated heritable muta-tions that conferred resistance to herbicides that in-hibit 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), acetolactate synthase (ALS), or acetyl CoA carboxylase (ACCase) activity. Collectively, we dem-onstrate that the ePE5max system has sufficient efficiency to generate heritable (homozygous or het-erozygous) mutations in maize target genes and that the main obstacle to using PEs in maize has thus been removed.
更多相关知识
- 浏览13
- 被引4
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



