医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Deep learning-based fusion of color and spectral features from hyperspectral imaging for the origin identification of Salvia miltiorrhiza

摘要Background:Salvia miltiorrhiza Bunge,commonly known as"Danshen"in China due to the distinctive red color of its roots,is one of the most widely used traditional Chinese medicines.It is cultivated in various regions across China,and environmental differences among these regions can affect the secondary metabolites of plants,thereby influencing the quality of S.miltiorrhiza.In recent years,increasing demand for S.miltiorrhiza has exacerbated the problem of origin fraud.Therefore,ensuring the authenticity of its geo-graphical origin is crucial for the sustainable development of the industry.Objective:The red coloration of S.miltiorrhiza is closely associated with the content of its primary active compounds,particularly tanshinones.Therefore,both its internal chemical composition and external color characteristics serve as key indicators for quality assessment.This study utilized hyperspectral imaging technology to evaluate its potential in classifying the geographical origin of S.miltiorrhiza.Methods:Spectral data reflecting the internal chemical properties of S.miltiorrhiza were integrated with color information represent-ing its external features through 3 levels of data fusion.These fused datasets were then combined with deep learning algorithms to achieve accurate origin classification.Results:The results demonstrated that the Transformer model combined with soft-voting decision-level fusion achieved the highest classification accuracy of 98.72%by integrating image color and short-wave infrared spectral data.Conclusion:This study demonstrates that integrating hyperspectral imaging spectral data with color information provides a reliable and innovative approach for verifying the authenticity and traceability of S.miltiorrhiza.

更多
广告
作者 Ruibin Bai [1] Feng Xiong [2] Hui Wang [2] Meiqi Luan [2] Junhui Zhou [1] Xiufu Wan [2] Zihan Zhao [1] Xiaobo Zhang [2] Chu Zhang [3] Jian Yang [1] 学术成果认领
作者单位 State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,National Resource Center for Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing,China;Evaluation and Research Center of Daodi Herbs of Jiangxi Province,Nanchang,China [1] State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,National Resource Center for Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing,China [2] School of Information Engineering,Huzhou University,Huzhou,China [3]
栏目名称
DOI 10.1097/st9.0000000000000079
发布时间 2025-10-24(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
中医药科学(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷