摘要随着人们生活水平的提高,甲状腺疾病的发生已经并不罕见,而国内甲状腺医疗资源分布不均,造成了大型医院人满为患、医生接诊病人多、病人看病时间长等问题。随着“互联网+”技术以及智慧医疗的迅速发展,甲状腺患者会寻求在线医疗咨询平台如寻医问药网、好大夫在线网等进行甲状腺疾病咨询。但这类平台需要医生在线,通过人工答诊的方式为患者提供咨询服务,导致这类在线咨询平台缺乏自动智能化问诊与答诊的途径,无法为大量的患者提供及时的疾病咨询服务。如何为甲状腺患者提供自动化的在线问答服务,已成为智慧医疗领域广泛关注的课题。<br> 甲状腺患者在就诊过程中会产生大量的甲状腺电子病历数据,这些数据为甲状腺诊疗自动问答系统的实现提供了数据来源。为此,本文在上海某三甲医院甲状腺电子病历的基础上,构建了甲状腺知识图谱,并基于甲状腺知识图谱,利用自然语言处理结合知识图谱查询技术,设计并实现一个面向甲状腺诊疗的自动问答系统。本文的研究内容主要包括:<br> 1)设计了基于甲状腺知识图谱的自动问答系统总体架构:阐述了系统的总体架构,将整个系统分为甲状腺知识图谱构建子系统和甲状腺诊疗自动问答子系统。甲状腺知识图谱构建子系统负责构建甲状腺诊疗自动问答系统进行查询的知识库,甲状腺诊疗自动问答子系统负责对用户输入的自然语言问句转化为知识图谱查询语句,而后得到问句的答案。根据子系统的各功能以及相互关系设计了整个系统的架构图,并对两个子系统分别进行了概述。<br> 2)设计了甲状腺知识图谱构建子系统:首先对甲状腺电子病历数据特点进行了分析,从中提取甲状腺相关术语,通过归纳同类术语,获得甲状腺知识图谱的相关概念,据此设计了甲状腺知识图谱概念模式结构。然后,分析概念模式结构,定义了概念之间的关系,完成甲状腺知识图谱概念模式的设计。随后,从数据库中提取甲状腺相关数据作为实体集,根据设计的概念模式进行实体填充操作。最后将实体以及实体关系以三元组<实体-关系-属性>构成甲状腺知识图谱。<br> 3)设计了基于甲状腺知识图谱的自动问答处理流程:甲状腺诊疗自动问答子系统主要由问句预处理模块和答案生成模块组成。在问句预处理模块中,首先利用中文分词算法将用户输入的问句进行分词操作,通过关键词获得问句的类别。其次,针对甲状腺咨询问句语料采用LSTM+CRF算法生成识别模型,利用该模型从问句中获得甲状腺实体。而后,利用LTP-parser工具对问句进行依存句法分析,得到句子中各结构的主客关系,形成问句的三元组形式。最后,将问句三元组中的实体映射到知识图谱的实体上,避免对不存在于知识图谱中的实体进行查询,获得查询的三元组。在答案生成模块中,根据问句类别,将问句预处理模块得到的查询三元组与SPARQL查询模板进行匹配,把自然语言的问题转化为知识图谱查询语言,通过在知识图谱内进行查询,得到问句的答案,再对问句的答案进行针对性的处理,最终反馈给用户。<br> 4)实现了基于甲状腺知识图谱的自动问答系统方案:首先对甲状腺知识图谱的构建细节以及构建成果进行展示。其次对自动问答系统中问句预处理模块和答案生成模块的实现过程以及系统成果进行展示。测试结果证明本文的自动问答系统具有较好的可用性。
更多相关知识
- 浏览0
- 被引19
- 下载0
相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文