• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

协同功能微泡构建及其在非小细胞肺癌治疗中的应用

摘要研究背景:在世界范围内,肺癌的发病率和死亡率均是排在第一位,肺癌的主要类型是非小细胞肺癌(NSCLC)。以PD1/PD-L1等免疫检查点抑制剂(ICIs)目前已成为肺癌治疗领域最热门的抗肿瘤药物,ICIs通过降低肿瘤细胞免疫逃逸能力而治疗肿瘤。大量的临床试验结果显示免疫疗法已经成为与化疗、放疗等同样有效的治疗晚期非小细胞肺癌的手段,ICIs已被NCCN指南推荐为晚期肺癌的一线治疗方法。<br>  临床证据表明,化疗药物联合PD1/PD-L1检查点抑制剂的治疗效果优于单一药物治疗。然而,除了PD1/PD-L1检查点抑制剂的心脏毒性外,联合用药还会加重血液学毒性、肝毒性和神经毒性。因此,需要适当的给药系统来减少这两种药物的不良影响。<br>  本课题中,我们首先合成了在DTX的磷脂微泡,并在微泡表面连接antiPD-L1抗体,主动和被动靶向作用下,化疗药物在肿瘤细胞内内大量富集,促进肿瘤细胞凋亡并抑制跨越肿瘤细胞周期;在皮下瘤模型的基础上,我们建立了小鼠肺内肿瘤模型,验证了在低频超声的作用下,新型多功能微泡对小鼠肺部原位肿瘤的治疗效果。我们构建了肺癌不完全消融皮下瘤模型,将微泡用于微波不完全消融后的残余病灶的治疗,验证了此协同功能超声微泡对于微波不完全消融后残余病灶的控制效果和作用机制。<br>  第一部分协同功能微泡构建及其对肺癌细胞的作用<br>  目的:构建负载多西他赛(DTX)和anti-PD-L1mAb的协同功能磷脂微泡(PDMs)并研究该微泡对肺癌细胞的杀伤作用。<br>  方法:通过薄膜水化法制备了负载多西他赛和anti-PD-L1mAb的磷协同功能磷脂微泡。通过电镜和激光共聚焦显微镜对微泡的形态进行观察,通过马尔文激光粒度分析仪检测粒径和Zeta电位,通过高效液相色谱方法检测微泡中的多西他赛包封率及载药率。我们同时检测了多西他赛的释放曲线,并对微泡的在体外和体内的成像能力进行了检测。通过微泡溶血实验和小鼠生化指标评估了微泡的生物安全性。通过激光共聚焦显微镜观察并流式细胞仪检测了,负载anti-PD-L1mAb微泡对肺癌细胞的摄取药物的影响。通过流式细胞术检测了鼠源的LLC细胞、人源的NCI-H460、NCI-1299和A549细胞表面的PD-L1的表达情况,通过CCK-8方法检测了微泡对几种细胞肺癌细胞的杀伤作用与PD-L1表达的关系。通过流式细胞术检测了微泡促进LLC肿瘤细胞凋亡的能力和细胞周期抑制能力。<br>  结果:负载多西他赛和anti-PD-L1mAb的协同功能磷脂微泡具有较好的形态,粒径666.4±35.9nm,包封率为57.34±2.61%,载药率为4.45±0.91%。超声作用下,微泡内的多西他赛释放速度明显提高,在微泡外连接anti-PD-L1mAb对多西他赛的药物释放没有影响。激光共聚焦显微镜下显示荧光标记抗体的结合在微泡表面。超声成像下微泡有较好的增强效果,增强效果不受搭载药物和抗体的影响。体外实验证明微泡不会产生溶血效应,微泡对小鼠的生化指标无明显影响,对重要器官无明显损害。激光共聚焦显微镜和流式细胞术显示载有anti-PD-L1抗体的微泡能促进肺癌细胞对药物的吸收,低频超声击破微泡可以进一步增加肺癌细胞对药物的吸收。CCK-8实验显示负载了anti-PD-L1mAb的微泡对肿瘤细胞增殖的抑制能力与肿瘤细胞表面PD-L1表达呈正相关,而低频超声辐照则增强了对肿瘤细胞的抑制作用。流式检测了微泡对肿瘤细胞凋亡的影响,结果显示超声辐照联合anti-PD-L1mAb使肺癌细胞总凋亡比例最高,同时,anti-PD-L1mAb的靶向作用和低频超声辐照可以增强多西他赛对肿瘤细胞周期的抑制作用。<br>  结论:通过薄膜水化法合成的负载多西他赛和anti-PD-L1mAb的协同功能磷脂微泡具有较好的成像能力,在低频超声作用下可以迅速释放药物,具有较好的生物安全性。该微泡可以促进肺癌细胞对药物的吸收,负载多西他赛和anti-PD-L1mAb的磷脂微泡对肿瘤细胞增殖有更强的抑制作用,在低频超声作用下能促进肺癌细胞的凋亡并能更好的抑制细胞周期。<br>  第二部分协同功能微泡(PDMs)对肺癌模型的治疗效果评价<br>  目的:建立小鼠肺癌皮下瘤模型及原位瘤模型,评估协同功能微泡对两种肺癌模型的治疗治疗效果。<br>  方法:建立小鼠肺癌皮下瘤模型,在微泡上搭载亲脂荧光探针DiR,分别标记多西他赛微泡(DMs),载多西他赛和anti-PD-L1mAb的协同功能微泡(PDMs),对比不同方法下(游离的DiR、DiR-DMs或DiR-PDMs经尾静脉注射,DiR-PDMs联合低频超声)在肿瘤部位的富集情况,评估了协同功能磷脂微泡超声击破后在药物肿瘤部位的富集能力,并通过活体成像对富集DiR的重要器官的进行成像观察组织分布。采用对照组(注射PBS)、FreeDTX(注射游离DTX溶液)、Freecombo(注射游离DTX和anti-PD-L1mAb)、DMs、PDMs,协同治疗组(PDMs+US)不同治疗方法对小鼠皮下瘤模型进行治疗,观察了小鼠的体重、肿瘤大小、生存期差异,对肿瘤标本进行TUNEL和免疫组化染色(CD31、Ki67)、检测了肿瘤样本中CD4+、CD8+T淋巴细胞的改变,通过westernblot方法对肿瘤组织中Cleaved-caspase3、Cleaved-caspase8、Cleaved-caspase9,通过ELISA方法对TNF-α,TGF-βandVEGF进行了检测。在DSA引导下经过肺穿刺建立了小鼠肺肺内肿瘤模型,采用上述不同方案进行治疗,通过CT进行随访,观察肿瘤体积、小鼠体重、生存期的变化。<br>  结果:与游离DiR和DiR-DMs相比,DiR-PDMs在体内和体外的肿瘤组织中均表现出增强的信号,而在低频超声下这种信号强度进一步增强。DiR-PDMs联合低频超声在第1小时即可是肿瘤内达到最大药物浓度,单纯DiR-PDMs注射药物浓度在第6小时达到最大值,游离DiR和DiR-DMs在肿瘤内的富集程度始终较低。在皮下瘤模型中,PDMs联合US照射组的存活率最高,且对肿瘤生长抑制效果最好,单独使用PDMs的治疗效果优于自由药物组合,排在第二位。协同治疗比化疗有更明显的疗效,DMs对肿瘤体积抑制和生存率的治疗效果略有改善,组间体重差异不明显。在肿瘤组织免疫组化染色中,联合治疗组中TUNEL凋亡率最高,CD31、Ki67最低。PDMs联合US照射组肿瘤样本中浸润的CD4+、CD8+T细胞比例和数量最多,凋亡通道蛋白cleaved-caspase3、cleaved-caspase8、cleaved-caspase9表达也最高。同时,PDMs联合US照射组有最高的TNF-α和最低的TGF-β、VEGF。通过CT评估,结果显示联合治疗组有最低的肿瘤生长速度,最长的生存期和最好的生存状态。<br>  结论:皮下瘤模型显示,协同功能磷脂微泡联合超声可以促进药物更快地在肿瘤富集并获得最高的药物浓度,产生最好的治疗效果。该治疗方案在,肺内肿瘤模型中也能起到同样的治疗效果。<br>  第三部分协同功能微泡(PDBMs)对肺癌不完全消融模型的治疗效果评价<br>  目的:建立小鼠肺癌不完全消融模型,评估协同功能微泡对肺癌不完全消融模型的治疗效果。<br>  方法:通过薄膜水化法制备了负载多西他赛、Bindarit和anti-PD-L1mAb的磷协同功能磷脂微泡(PDBMs)。通过电镜、紫外光谱仪检测了微泡的形态、光谱等指标,采用高效液相色谱方法测试了微泡中的多西他赛、Bindarit的包封率和载药率。通过动物生化指标和重要脏器的HE染色切片评估了微泡的生物安全性。采用45℃15min为不完全微波消融组(iMWA),65℃15min为完全消融组,通过流式细胞术检测了微波消融+PDBMs对肺癌细胞凋亡的影响。通过激光共聚焦显微镜和流式细胞术检测了微波消融+PDBMs对肺癌表达单核细胞趋化蛋白-1(CCL2、MCP-1)、钙网蛋白(CRT)、PD-L1的影响。将微波消融+PDBMs治疗后的肺癌细胞与DC细胞在Transwell小室内孵育,通过流式细胞术检测微波消融+PDBMs治疗后的肺癌细胞对小鼠骨髓来源DC细胞(BMDCs)活化的影响。将微波消融+PDBMs治疗后的肺癌细胞、BMDCs、T淋巴细胞共同孵育,通过流式细胞术检测Ki67和GranzymeB评价T淋巴细胞的增殖能力和杀伤能力。通过标本、活体肿瘤探索了构建不完全消融的微波参数。构建小鼠肺癌不完全消融模型并随机分为五组:对照组(Control),不完全消融组(iMWA),iMWA+DTX组,iMWA+Bindarit组,iMWA+PDBMs,随访肿瘤体积、计算生存时间并检测肺转移灶的数量。将组织标本通过TUNEL染色评价治疗不同方法对肿瘤凋亡的影响,通过Ki67染色评价肿瘤组织内的增殖能力。通过流式细胞术评价肿瘤组织内CD4+和CD8+T细胞比例,以及Treg细胞的比例。检测肿瘤组织内TGF-β、VEGF、IL-10细胞因子的水平。<br>  结果:我们成功合成了负载多西他赛、Bindarit和anti-PD-L1mAb的磷协同功能微泡。电镜下微泡呈现规则的圆形,紫外光谱显示PDBMs的波形,HPLC检测结果显示PDBMs中DTX的包封率为35.56±5.86%,载药率为4.25±0.67%,Bindarit的包封率为37.85±6.75%,载药率为4.67±0.53%。经尾静脉注射PDBMs每七天一次,总共五次,生化指标随访均在正常范围内,心、肝、脾、肺、肾HE染色未见异常。完全消融组(cMWA)促进肺癌细胞凋亡的作用最强,iMWA、iMWA+DTX组、iMWA+Bindarit组和iMWA+PDBMs引起肺癌细胞总凋亡比例在40%~50%之间。将干预后的各组通过共聚焦显微镜和流式细胞术检测CCL2表达,结果显示,cMWA组最弱,iMWA组较对照组CCL2表达上升,iMWA+DTX组与对照组无明显统计学差异,在Bindarit的作用下iMWA+Bindarit组和iMWA+PDBMs的CCL2表达下降。通过共聚焦和流式细胞术对治疗后肺癌细胞检测发现不完全消融后肺癌CRT表达上升,DTX、Bindarit和anti-PD-L1mAb对CRT表达无明显影响,不完全消融、DTX、Bindarit对肺癌细胞表达PD-L1无明显影响。在对DC活化检测方面,iMWA+PDBMs组DC激活比例增加,同时DC的IL-12p70分泌也相应增加;在T淋巴细胞活化方面,iMWA+PDBMs相较其他组可以增强CD8+T细胞的增殖能力和GranzymeB的表达量。我们建立了不完全消融模型,五组治疗方案中,iMWA+PDBMs可以明显降低消融后肿瘤生长速度,延长生存期,减少转移结节数目。消融后肿瘤组织TUNEL染色和Ki67免疫组化结果显示,iMWA+PDBMs组肿瘤内比例最高,增殖能力最弱。对肿瘤组织进行流式细胞术检测结果显示,iMWA+PDBMs组CD4+和CD8+T细胞比例上升,其中CD8+T细胞上升更明显,Treg比例下降。对肿瘤内细胞因子检测显示,微波消融后TGF-β、VEGF上升,协同微泡治疗后肿瘤内TGF-β、VEGF、IL-10下降。<br>  结论:协同功能微泡PDBMs具有很好的生物安全性,协同功能微泡可以抑制肺癌细胞CCL2的表达,提高DC细胞和T淋巴细胞的活化比例,降低肺癌不完全消融灶的生长速率和肺转移灶数量并延长小鼠的生存期。协同功能微泡PDBMs对肺癌消融后的治疗具有很高的潜在应用价值。

更多
广告
  • 浏览10
  • 下载8

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷