- 最近
- 已收藏
- 排序
- 筛选
- 14
- 2
- 4
- 2
- 1
- 1
- 1
- 中文期刊
- 刊名
- 作者
- 作者单位
- 收录源
- 栏目名称
- 语种
- 主题词
- 外文期刊
- 文献类型
- 刊名
- 作者
- 主题词
- 收录源
- 语种
- 学位论文
- 授予学位
- 授予单位
- 会议论文
- 主办单位
- 专 利
- 专利分类
- 专利类型
- 国家/组织
- 法律状态
- 申请/专利权人
- 发明/设计人
- 成 果
- 鉴定年份
- 学科分类
- 地域
- 完成单位
- 标 准
- 强制性标准
- 中标分类
- 标准类型
- 标准状态
- 来源数据库
- 法 规
- 法规分类
- 内容分类
- 效力级别
- 时效性
- 概要:
- 方法:
- 结论:
【中文期刊】 聂晶品 《科技信息》 2010年2卷17期 704-705页
【摘要】 学过数学特别是学习过三角函数的学生都有这样体会,在三角函数这一块知识中公式又多又繁复,这对初学三角函数知识的学生来说,本来三角函数的概念、定理等需要理解,这又来这么一大堆公式,这给初学者设置一个个"拦路虎",使得我们初学者苦不堪言,如何来为...
- 概要:
- 方法:
- 结论:
【中文期刊】 余希临 沈先涛 等 《中国矫形外科杂志》 2005年13卷8期 637-638页ISTICPKUCSCDCA
【摘要】 目的:探讨用三角函数正切公式计算肘内翻楔形截骨角度和截骨量及手术方法和疗效.方法:肘内翻21例,内翻角15~45°,平均26.4°,其中超过30°有7例.用轴线相交法测得肘内翻的角度和健侧肘关节提携角,将所得数值代入三角函数正切公式,将截骨...
- 概要:
- 方法:
- 结论:
【中文期刊】 董凯 丁婕 等 《国际眼科杂志》 2019年19卷8期 1263-1268页ISTICCA
【摘要】 目的:使用UBM在术前测量巩膜前表面到硅油泡的距离,利用三角函数的计算公式,从而计算出23G套管的安全活动角度,最大限度避免术中取油时损伤视网膜.方法:从2017/03-2017/09,共选取15例硅油眼患者,年龄32~69岁,首次手术均为...
- 概要:
- 方法:
- 结论:
【中文期刊】 赵燕鹏 曹延祥 等 《中国数字医学》 2018年13卷7期 10-14页ISTIC
【摘要】 目的:建立一种计算机辅助定量手术规划方法,以防止股骨颈骨折术中空心螺钉切出股骨头或股骨颈之外.方法:获取112个正常股骨CT数据,导入软件中进行解剖参数测量,利用三角函数推导数学公式,以精确计算螺钉在股骨颈内的空间分布.利用组内相关系数IC...
- 概要:
- 方法:
- 结论:
【中文期刊】 吕佳萍 孙向荣 《数理医药学杂志》 2015年11期 1731-1733页CA
【摘要】 不定积分是医药高等数学中积分学里的重要内容,根据被积函数和积分变量的形式,我们可以将被积表达式进行适当改写,运用积分方法和积分公式来确定结果。被积函数和积分变量的形式千变万化,不定积分的计算难度、方法和技巧也不一样。如果被积函数中出现了自然...
- 概要:
- 方法:
- 结论:
【中文期刊】 黑宝骊 陈艳丽 等 《河北北方学院学报(自然科学版)》 2015年3期 1-5页
【摘要】 首先应用三角函数、双曲函数以及二者乘积的级数展开式,证明 Riemann Zeta 函数ζ(s)(s 为偶数)时的一系列表达式,并得到一个表达形式较为简单的递推公式;同时应用此方法得到∑数)时的一个递推公式,并应用留数基本定理逐一证明。∞c...
【关键词】 Riemann Zeta 函数;双曲函数的级数;留数定理;
- 概要:
- 方法:
- 结论:
【中文期刊】 杨春艳 及万会 《河北北方学院学报(自然科学版)》 2012年28卷4期 1-4页
【摘要】 利用已知级数公式,使用复变函数方法和幂级数公式给出了一类对偶三角函数级数封闭形和式∞∑k=1(tkcos(pk+s)x)/k,∞∑k=1(-1)k+1tkcos(pk+)s)s/k,∞∑k=1tkk+1cos(2k+s)x/2k+1,∞∑k...
- 概要:
- 方法:
- 结论:
【中文期刊】 及万会 李忠宁 《河北北方学院学报(自然科学版)》 2010年26卷4期 8-10页
【摘要】 利用发生函数的方法,研究了三角函数序列:∑nk=0dkcos(kα+φ)与∑nk=0(-1)kdksin(kα+φ),得到了其封闭形和式计算公式和正负相间封闭形计算公式,其次利用复数隶莫佛公式给出两个三角函数积的和式∑nk=0cos(kα+...
- 概要:
- 方法:
- 结论:
【中文期刊】 熊德永 马慧 《安徽科技学院学报》 2010年24卷2期 40-43页
【摘要】 利用两角的和与差公式、反三角函数等不同的方法详细推导了两个互相垂直且同频率的二维简谐振动合成的轨迹方程,并以此为基础推导出三个互相垂直且同频率的简谐振动合成轨迹方程,其合成振动的轨迹亦为椭圆,该椭圆的形状和取向由分振动的振幅和初相位决定.
- 概要:
- 方法:
- 结论: